INVESTIGATION OF THE EFFECT OF WATER CIRCULATION ACIDIFICATION ON EFFLUENT SULPHATE ION DISCHARGES

Authors

DOI:

https://doi.org/10.32782/naturaljournal.6.2023.14

Keywords:

pollutant discharges, water treatment, environmental regulation, water discharge

Abstract

The paper is devoted to the study of the impact of the acidification technology by stabilisation treatment (ST) with sulphuric acid (H2SO4) of cooling water of the water circulation system (WCS) on the discharge of sulphate ions (SO4 2-) with return water and the impact of water discharge on surface waters. The subject of the study is SO4 2- content in the surface water of the Styr River and the process water of the Rivne NPP (RNPP), the subject of the study is the ST with use H2SO4 for WCS and its impact on the SO4 2- discharge with the return water of the RNPP. The aim of the study is to investigate the ST technology of the RNPP using H2SO4 and to determine the SO4 2- contamination of the surface water of the Styr River caused by the ST used at the RNPP and to determine the influence of a nuclear power plant (NPP) operation modes on the minimisation of SO4 2- sources. The relevance of the work is due to the need to implement measures to protect water resources from pollution and their rational use in water treatment technologies of NPPs WCS. Minimising the environmental impact by reducing the use of reagents for the ST, which is considered in the study, is important in view of the sustainable development of the energy sector. The paper presents the results of research and analysis of H2SO4 dosing to ensure the water chemical regime (WCR), the ST with H2SO4 regime allows to neutralisе the alkalinity of the cooling water of the cooling plant due to the content of bicarbonate (HCO3 -) and carbonate (CO3 2-) ions and to convert part of the calcium ions bound to HCO3 - and CO3 2- ions to constant hardness. The use of H2SO4 for ST may be appropriate for water treatment to reduce scale in the cooling water system, according to the criteria for acidification of makeup cooling water, which is determined by the dosing criterion. The practical significance of the work is the introduction of the technological regime of cooling water treatment at RNPP to ensure the maintenance of optimal quality indicators of cooling water treatment, reduction of H2SO4 consumption and minimisation of SO4 2- discharges into the water body – the Styr River. In general, the results of the study indicate that the ST WCS RNPP has no environmental impact on the Styr River water body. The study can be applied to any power plant that with WCS uses the technology of acidification of the ST using H2SO4.

References

Biedunkova, O.O., & Kuznietsov, P.M. (2023). Formuvannia karbonatnoi systemy oborotnoi okholodzhuiuchoi vody atomnoi elektrostantsii ta vplyv na poverkhnevykh vod pry zvorotnykh skydakh [Formation of a carbonate system of recycled cooling water of a nuclear power plant and its influence on the pH of surface waters during return discharges]. Ekolohichni nauky [Environmental sciences], 3(48). 163-168 [in Ukrainian].

Vymohy [Requirements] (2022). Hihiienichni normatyvy yakosti vody vodnykh obiektiv dlia zadovolennia pytnykh, pobutovykh ta inshykh potreb naselennia [Hygienic water quality standards for water bodies to meet the drinking, domestic and other needs of the population]. [Electronic resource] URL: https://zakon.rada.gov.ua/laws/show/z0524-22#Text (access date 05.11.2023) [in Ukrainian].

Vymohy [Requirements] (1990). Uzahalnenyi perelik hranychno dopustymykh kontsentratsii (HDK) ta oriientovno bezpechnykh rivniv vplyvu (VZUV) shkidlyvykh rechovyn dlia vody rybohospodarskykh vodoim. Minahropolityky [A generalized list of maximum permissible concentrations (MPC) and approximate safe exposure levels (ASEL) of harmful substances for water in fishery reservoirs. Ministry of Agrarian Policy]. [Electronic resource] URL: http://online.budstandart.com/ua/catalog/doc (access date 05.11.2023) [in Ukrainian].

Dozvil na spetsvodokorystuvannia VP RAES № 53/RV/49d-20. (2020). [Special water use permit for RNPP No. 53/RV/49d-20] [Electronic resource] URL: https://e-services.davr.gov.ua/ (access date 05.11.2023) [in Ukrainian].

DSTU ISO 5667-6-2001. (2023). Iakist vody. Vidbyrannia prob. Chastyna 6. Nastanovy shchodo vidbyrannia prob z richok ta inshykh vodotokiv [Water quality. Sampling. Part 6. Guidelines for sampling rivers and other watercourses]. [Electronic resource] URL: http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=64511 (access date 05.11.2023) [in Ukrainian].

Zvit z otsinky vplyvu neradiatsiinykh faktoriv VP «Rivnenska AES» DP «NAEK «Enerhoatom» na dovkillia za 2013–2022 [Report on Environmental Impact Assessment of Non-Radiation Factors of the Rivne NPP of the Energoatom Company for 2013–2022]. [Electronic resource] URL: https://energoatom.gov.ua/wp-content/uploads//pasport.pdf (access date 05.11.2023) [in Ukrainian].

Kuznietsov, P.M. (2022). Biolohichne zabrudnennia ta ekoloho – utylitarni metody zmenshennia biolohichnykh pereshkod u systemi tekhnichnoho vodopostachannia elektrostantsii [Biological Pollution and Ecological-Utilitarian Methods of Reducing Biological Interference in the Technical Water Supply System of Power Plants]. Materialy tez dopovidei III Mizhnarodna naukovo-praktychna konferentsiia «Pryrodnychi nauky: proiekty, doslidzhennia, perspektyvy», K.: «Talkom». 176. [Electronic resource] URL: http://dspace.luguniv.edu.ua/jspui/bitstream/123456789/9537/1/fpn_zb_mater_3michn_konf2022.pdf#page=46 (access date 05.11.2023) [in Ukrainian].

Kuznietsov, P.M., & Biedunkova, O.O. (2022). Porivnialnyi hidrobiolohichnyi monitorynh vod system tekhnichnoho vodopostachannia atomnykh elektrostantsii [Comparative hydrobiological monitoring of water in technical water supply systems of nuclear power plants]. Vodni bioresursy ta akvakultura [Aquatic bioresources and aquaculture], 2(12). 180–190 [in Ukrainian].

Kuznietsov, P.M., & Biedunkova, O.O. (2023). Suchasni pidkhody do zdiisnennia antynakypnoi obrobky tekhnolohichnykh vod oborotnykh system okholodzhennia elektrostantsii [Modern approaches to the implementation of antiscale treatment of process waters of circulating cooling systems of power plants]. Kompleksne zabezpechennia yakosti tekhnolohichnykh protsesiv ta system (KZIaTPS – 2023) : materialy tez dopovidei XIII Mizhnarodnoi naukovo-praktychnoi konferentsii (m. Chernihiv, 25–26 travnia 2023 r.) : u 2 t. / Natsionalnyi universytet «Chernihivska politekhnika» [ta in.] ; Chernihiv : NU «Chernihivska politekhnika», 2023. T. 2. s. 158–160. [Electronic resource] URL: http://ir.stu.cn.ua/123456789/28099 (access date 05.11.2023) [in Ukrainian].

Poverkhnevi, pidzemni ta zvorotni vody [Surface water, groundwater, and recycled water]. Metodyka vymiriuvannia masovoi kontsentratsii sulfativ tytrymetrychnym metodom [Method for measuring the mass concentration of sulfates by the titrimetric method]. MVV 081/12-0177-05. (2005). 29 p. [Electronic resource] URL: http://online.budstandart.com/ua/catalog/doc-page?id_doc=76457 (access date 05.11.2023) [in Ukrainian].

Rozporiadzhennia Kabinetu Ministriv Ukrainy vid 09.12.2022 № 1134-r [On approval of the Water Strategy of Ukraine for the period up to 2050 : Order of the Cabinet of Ministers of Ukraine of 09.12.2022 No. 1134-r]. Pro skhvalennia Vodnoi stratehii Ukrainy na period do 2050 roku: (2022). [Electronic resource] URL: https://zakon.rada.gov.ua/laws/show/1134-2022-%D1%80#Text (access date 05.11.2023) [in Ukrainian].

Argüelles, R., Toledo, M., & Martín, M.A. (2021). Study of the Tagus River and Entrepeñas reservoir ecosystem around the Trillo nuclear power plant using chemometric analysis: Influence on water, sediments, algae and fish. Chemosphere. 279 (130532). https://doi.org/10.1016/j.chemosphere.2021.130532 [in English].

Barker, J., Alyssa, J.F., & Pellerin, A. (2017). The Biogeochemical Sulfur Cycle of Marine Sediments. Frontiers in Microbiology. 10(5). https://doi.org/10.3389/fmicb.2019.00849 [in English].

Chen, M., Hong, X., He, Y., Song, N., Cai, H., Wang, C., Li, Y. T., Chu, H.Y., Krumholz, L.R., & Jiang, H.L. (2016). Increasing sulfate concentrations result in higher sulfide production and phosphorous mobilization in a shallow eutrophic freshwater lake, Water Research. 96(1), pp. 94–104. https://doi.org/10.1016/j.watres.2016.03.030 [in English].

GBC Government of British Columbia (2006). British Columbia approved water quality guidelines. Ministry of environment. Canada. Retrieved March 16, 2009, [Electronic resource] URL: http://www.env.gov.bc.ca/wat/wq/BCguidelines/approv_wq_guide/approved.html ( access date 05.11.2023) [in English].

Kuznietsov, P., & Biedunkova, O. (2023). Study of Сhanges in Acid-Alkaline Balance of Cooling Water Сirculating System of Power Plants during Water Treatment by Liming According to Stabilization Treatment Method, 4th International Scientific Conference «Chemical Technology and Engineering: Proceedings – June 26–29th, 2023, Lviv, Ukraine, pp. 239–241 https://doi.org/10.23939/cte2023.239 [in English].

Little, B.J., Ray, R.I., & Pope, R.K. (2000). Relationship Between Corrosion and the Biological Sulfur Cycle: A Review. Corrosion, 2000. 56 (4), 433–443. https://doi.org/10.5006/1.3280548 [in English].

Macknick, J., Newmark, R., Heath, G., & Hallett, K.C. (2012). Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature. Environmental Research Letters. 7(4), pp. 045802. https://doi.org/10.1088/1748-9326/7/4/045802 [in English].

NHMRC. Australian drinking water guidelines. Retrieved March 16, 2004. [Electronic resource] URL: http://www.nhmrc.gov.au/publications/synopses/_files/adwg_11_06_ info_sheets.pdf (access date 05.11.2023) [in English].

Norboyev, K., Mukhtarov, F., & Zokhid, H.N. (2023). Usmonov Study of the influence of cooling water quality and inhibitors on the corrosion rate of brass in cooling water E3S Web Conf., 434 01029 https://doi.org/10.1051/e3sconf/202343401029 [in English].

Peterson, N.L. (1990). Drinking water and health. Sulphates in drinking water. Water Sewage Works. 55(143), pp. 425-428 [in English].

RAIS Risk Assessment Information System (1998). Toxicity profiles: Toxicity summary of sulphate. Retrieved March 16, 2009. [Electronic resource] URL: http://rais.ornl.gov/tox/profiles/sulfate_f_V1. Shtml (access date 05.11.2023) [in English].

SC090012/R2. (2011). Chemical discharges from nuclear power stations: historical releases and implications for Best Available Techniques Annex Report – SC090012/R2, Environment Agency, Horizon House, Deanery Road, [Electronic resource] URL: https://www.environment-agency.gov.uk (access date 05.11.2023) [in English].

Strategies to Reduce Sulfuric Acid Usage in Evaporative Cooling Water Systems. Water. (2010). [Electronic resource] URL: https://www.powermag.com/strategies-to-reduce-sulfuric-acid-usagein-evaporative-cooling-water-systems/ (access date 05.11.2023) [in English].

Sumita, D., Yadav, A., Dwivedi, P.D., & Das, M. (2015). Toxic hazards of leather industry and technologies to combat threat: a review, Journal of Cleaner Production. 87, pp. 39–49. https://doi.org/10.1016/j.jclepro.2014.10.017 [in English].

Universidad Austral de Chile (2005). Estudio sobre origen de mortalidades y disminución poblacional de aves acuáticas en el santuario de la naturaleza Carlos Anwandter, en la provincia de Valdivia. [Electronic resource] URL: https://www.ceachile.cl/Cruces/PDF/25.%20Informe%20final%20UACh.pdf (access date 05.11.2023) [in Spanish].

Wessa, P. (2023) Free Statistics Software, Office for Research Development and Education, ver.1.2.1. [Electronic resource] URL: https://www.wessa.net/ (access date 05.11.2023) [in English].

World Health Organisation (2004). Sulphate in drinking-water. Background document for development of WHO guidelines for drinking-water quality. [Electronic resource] URL: https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/sulfate.pdf?sfvrsn=b944d584_4 (access date 05.11.2023) [in English].

Zak, D., Hupfer, M., Cabezas, A., Jurasinski, G., Audet, J., & Kleeberg, A., et al. (2021). Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation, Earth-Science Reviews, Volume 212 (103446). https://doi.org/10.1016/j.earscirev.2020.103446 [in English].

Zhang, W., Ma, L., Jia, B., Zhang, Z., Liu, Y., & Duan, L. (2023). Optimization of the circulating cooling water mass flow in indirect dry cooling system of thermal power unit using artificial neural network based on genetic algorithm. Applied Thermal Engineering. 223(120040). https://doi.org/10.1016/j.applthermaleng.2023.120040 [in English].

Published

2023-12-27