THE INFLUENCE OF CADMIUM IONS ON CERTAIN LIPID GROUPS IN LYMNAEA STAGNALIS TISSUES AND ORGANS

Authors

DOI:

https://doi.org/10.32782/naturaljournal.5.2023.1

Keywords:

triacylglycerols, diacylglycerols, non-esterified fatty acids, phospholipids, heavy metal ions, freshwater mollusks, oxidative stress

Abstract

The quantity of total lipids and their separate groups (triacylglycerols (TAG), diacylglycerols (DAG), nonesterified fatty acids (NEFA) and phospholipids (PL)) in the hemolymph, hepatopancreas, mantle and leg of Lymnaea stagnalis was studied under the influence of cadmium ions at a concentration of 5 maximum permissible concentrations for fishing ponds. It was found that the quantity of these compounds in the body of L. stagnalis is diverse, organ-specific and largely depends on the duration of the influence of the toxicant (2, 7 days). It was determined that Cd2+ ions, regardless of the duration of exposure, cause a decrease of triacylglycerols in the hepatopancreas, mantle and leg of L. stagnalis by 16.16–38.76% (p ≤ 0.05– 0.01), which probably indicates the activation of lipases and strengthening of lipolysis processes to compensate the high energy loss associated with adaptation of the mollusk body to the action of the toxicant. Along with a decrease in triacylglycerols in the hepatopancreas of L. stagnalis, an increase in the content of diacylglycerols and non-esterified fatty acids by 10.43–34.59% (p ≤ 0.05–0.01) was recorded under the short-term effect of Cd2+ (2 days), and with prolongation up to 7 days significant accumulation of diacylglycerols in the body was noted. As for the indicators of NEFA, no statistically significant differences with the control group of animals for the hepatopancreas were established. In the mantle, leg, and hemolymph, the content of individual lipid groups is specific and determined by the time L. stagnalis is in a toxic environment. The results obtained by us indicate, on the one hand, the activation of protective mechanisms in the studied animals, and on the other hand, physiological and biochemical changes in the body. Therefore, the lipid content of the studied groups reflects the adaptive response of the L. stagnalis organism to changes in environmental factors.

References

Дудник С.В., Євтушенко М.Ю. Водна токсикологія: основні теоретичні положення та їхнє практичне застосування : монографія, Київ : Вид-во Українського фітосоціологічного центру, 2013. 297 с.

Крайнюков О.М., Тімченко В.Д. Вплив хімічних речовин токсичної дії на представників біотичної складової водних екосистем. Проблеми охорони навколишнього природного середовища та екологічної безпеки. 2016. 38. С. 111–120.

Ситник Ю.М., Арсан О.М., Киричук Г.Є., Ляшенко А.В., Вітовецька Т.В. Вміст важких металів в органах та тканинах молюсків деяких водойм міської зони Києва. Наукові записки Тернопільського національного педагогічного університету імені Володимира Гнатюка. 2012. (51). С. 230–236.

Киричук Г.Є., Стадниченко А.П. Фізико-хімічні особливості гемолімфи Planorbarius purpura та P. corneus (Mollusca: Gastropoda: Pulmonata: Bulinidae. Вісник Львівського університету. Серія біологічна. 2003. 32. С. 239–245.

Ячна М.Г., Мехед О.Б., Третяк О.П., Яковенко Б.В. Вміст фосфоліпідів у тканинах коропа луcкатого (Cyprinus carpio L.) за дії натрій лаурилсульфатвмісного та безфосфатного синтетичних миючих засобів. Наук. зап. Терноп. нац. пед. ун-ту. Сер. Біол. 2019. № 2 (76). С. 48–52.

Chan C.Y., Wang W.X. A lipidomic approach to understand copper resilience in oyster Crassostrea hongkongensis. Aquatic Toxicology. 2018. 204. 160–170. https://doi.org/10.1016/j.aquatox.2018.09.011.

Choong G., Liu Y., Templeton D.M. Interplay of calcium and cadmium in mediating cadmium toxicity. Chemicobiological interactions. 2014. 211. P. 54–65. https://doi.org/10.1016/j.cbi.2014.01.007.

Ekin I., Başhan M., Şeşen R. A comparison of the fatty acid composition of the phospholipid and neutral lipid of Unio elongatulus (Bourguignat, 1860) (Bivalvia: Unionidae) mussels from 4 different localities in southeastern Anatolia, Turkey. Turkish Journal of Zoology. 2011. 35 (6). P. 837–849. https://doi.org/10.3906/zoo-1002-5.

Folch J., Lees M., Sloante Stanley A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957. 226 (1). P. 497–509. https://doi.org/10.1016/ s0021-9258(18)64849-5.

Hochachka P.M., Somero G.N. Biochemical Adaptation. Oxford : Princeton University Press, 2002.

Kates M. Isolation, analysis and identification of lipids. Techniques in Lipidology. 1972. P. 268–618.

Lee J.W., Jo A.W., Choi C., Kim J.H. Review of cadmium toxicity effects on fish: oxidative stress and immune responses. Environmental Research. 2023. 236. 116600. https://doi.org/10.1016/j.envres.2023.116600.

Lehninger A.L., Nelson D.L., Cox M.M. Lehninger principles of biochemistry. Macmillan, 2005. Liu Y., Chen Q., Li Y., Bi L., Jin L., Peng R. Toxic effects of cadmium on fish. Toxics. 2022. 10 (10). 622 p. https://doi.org/10.3390/toxics10100622.

Rajakumar S., Bhanupriya N., Ravi C., Nachiappan V. Endoplasmic reticulum stress and calcium imbalance are involved in cadmium-induced lipid aberrancy in Saccharomyces cerevisiae. Cell Stress Chaperones. 2016a. 21. P. 895–906. https://doi.org/10.1007/s12192-016-0714-4.

Ren J., Luo J., Ma H., Wang X., Ma L. Q. Bioavailability and oxidative stress of cadmium to Corbicula fluminea. Environmental Science: Processes & Impacts. 2013. 15 (4). P. 860–869. https://doi.org/10.1039/c3em30288a.

Vance D.E., Vance J.E. Biochemistry of Lipids, Lipoproteins and Membranes. 4th ed. Amsterdam : Elsevier, 2002.

Published

2023-12-22