DIMERIC FUNCTIONALIZED SURFACTANTS IN THE PROCESSES OF DESTRUCTION OF PHOSPHORUS AND SULFUR ESTERS
DOI:
https://doi.org/10.32782/naturaljournal.4.2023.11Keywords:
surfactants, micellar catalysis, α-nucleophiles, phosphorus- and sulfur-containing ecotoxicants.Abstract
The search and development of reagents for effective decomposition of organophosphorus ecotoxic substrates is a task of indisputable importance. One of these reagents is surfactants, especially in combination with micellar catalysis. The indisputable advantage of micellar systems, in comparison with other organized microheterogeneous media, is that a radical change in the properties of thmedium is achieved by the introduction of fairly small amounts of micelle-forming substances. At the same time, the main component of such systems, in most cases, is water, which makes them extremely attractive for practical use from the point of view of «green» chemistry. Surfactants (surfactants) functionalized with oxime fragments are one of the most effective reagents used for the degradation of acyl-containing ecotoxicants. These surfactants combine the advantages of highly reactive α-nucleophiles and micellar systems that ensure successful nucleophilic cleavage and solubilization of poorly water-soluble substrates. Experimental data showed that the reactivity of somicellar systems based on dimeric functionalized tetraalkylammonium surfactant in the processes of transferring phosphoryl and sulfonyl groups was lower than that of systems based on a similar imidazolium surfactant. The analysis of the obtained results made it possible to conclude that the observed difference in the kinetics of acyl group transfer, which is promoted by dimeric surfactants differing in the nature of the cationic center, has a general character and is a consequence of the different nucleophilicity of both their oximate fragments and different methods of solubilization of hydrophobic substrates. The most likely reasons for the latter are differences in intramolecular Coulomb interactions and packing of surfactant molecules in somicelles.
References
Капитанов И. В., Сердюк А. А., Шумейко А. Е., Прокопьева Т. М., Попов А. Ф. Кислотно- основные свойства функционализированных ПАВ в мицеллярных системах. Украинский химический журнал. 2017. Т. 83. № 8. С. 94–102.
Bunton C.A. The dependence of micellar rate effects upon reaction mechanism. Adv. Colloid Interface Sci. 2006. V. 123. P. 333–343. https://doi.org/10.1016/j.cis.2006.05.008
Handbook of Applied Surface and Colloid Chemistry. Volumes 1 and 2. Edited by K. Holmberg, J. Wiley. West Sussex. 2002. 1110 P. https://doi.org/10.1021/ja025281k
Kapitanov I. V., Mirgorodskaya A. B., Valeeva F. G., Gathergood N., Kuca K., Zakharova L. Y., Karpichev Y. Physicochemical properties and esterolytic reactivity of oxime functionalized surfactants in pH-responsive mixed micellar system. Colloids Surf. A: Physicochem. Eng. Aspects. 2017. V. 24. P. 143–159. https://doi.org/10.1016/j.colsurfa.2017.04.039
Kapitanov I. V. Nucleophilicity of micellar systems based on amphiphilic derivatives of 2-(oximinomethyl) imidazole in the decomposition of 4-nitrophenyl diethyl phosphate. Theoretical and Experimental Chemistry. 2011. V. 47. P. 317–323. https://doi.org/10.1007/s11237-011-9221y Mirgorodskaya A. B., Karpichev Y., Zakharova L., Yackevich E., Kapitanov I., Lukashenko, S., Popov A., Konovalov, A. Aggregation behavior and interface properties of mixed surfactant systems gemini 14-s-14/CTABr. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014. V. 457, N 5. P. 435–432. https://doi.org/10.1016/j.colsurfa.2014.06.026
Mirgorodskaya A. B., Valeeva F. G., Kushnazarova R. A., Lukashenko S. S., Zakharova L. Y. Catalytic Effect of Micellar Systems Based on Hydroxypiperidinium Surfactants in the Hydrolysis of a p-Nitrophenyl Phosphonate. Kinetics and Catalysis. 2021. V. 62. P. 82–88. https:// doi.org/10.1134/S0023158420060099
Pandya S. J., Kapitanov I. V., Banjare M. K., Behera K., Borovkov V., Ghosh K. K., Karpichev Y. E. Mixed Oxime-Functionalized IL/16-s-16 Gemini Surfactants System: Physicochemical Study and Structural Transitions in the Presence of Promethazine as a Potential Chiral Pollutant. Chemosensors. 2022. V. 10. P. 1–21. https://doi.org/10.3390/chemosensors1002004
Pal A., Datta S., Aswal V. K., Bhattacharya S. Small-Angle Neutron-Scattering Studies of Mixed Micellar Structures Made of Dimeric Surfactants Having Imidazolium and Ammonium Headgroups. J. Phys. Chem. B. 2012, V. 116. P. 13239–13247. https://doi.org/10.1021/jp304700t
Popov A., Kapitanov I., Serdyuk A., Shumeiko A. Reactivity of nucleophiles and α-effect in substitution processes at electron - deficiency centers (Part 1). Ukrainian chemistry journal. 2020. V. 86. N 7. P. 3–31. https://doi.org/10.33609/2708-129X.86.7.2020.3-31
Popov A., Kapitanov I., Serdyuk A., Shumeiko A. Reactivity of nucleophiles and α-effect in substitution processes at electron - deficiency centers (Part 2). Ukrainian chemistry journal. 2020. V. 86. N 8. P. 77–100. https://doi.org/10.33609/2708-129X.86.8.2020.77-100
Popov A. F. Design of green microorganized systems for decontamination of ecotoxicants. Pure Appl. Chem. 2008. V. 80. P. 1381–1397. https://doi.org/10.1351/pac200880071381
Serdyuk A. A., Mirgorodskaya A. B., Kapitanov I. V., Gathergood N., Zakharova L. Y., Sinyashin O. G., Karpichev Y. A. Effect of structure of polycyclic aromatic substrates on solubilization capacity and size of cationic monomeric and gemini 14-s-14 surfactant aggregates. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2016. V. 509. P. 613–622. https://doi.org/10.1016/j. colsurfa.2016.09.068
Singh N., Karpichev Ye., Tiwari A. K., Kuca K., Ghosh K. K. Oxime functionality in surfactant self-assembly: An overview on combating toxicity of organophosphates. J. Mol. Liq. 2015. V. 208. P. 237–252. https://doi.org/10.1016/j.molliq.2015.04.010
Singh N., Karpichev Y., Gupta B., Satnami M. L., Marek J., Kuca K., Ghosh K. K. Physicochemical Properties and Supernucleophilicity of Oxime-Functionalized Surfactants: Hydrolytic Catalysts toward Dephosphorylation of Di- and Triphosphate Esters. J. Phys. Chem. B. 2013. V. 117. P. 3806–3817. https://doi.org/10.1021/jp310010q
Singh N., Karpichev Y., Sharma R., Gupta B., Sahu A., Manmohan L., Ghosh S. From α-nucleophiles to functionalized aggregates: exploring the reactivity of hydroxamate ion towards esterolytic reactions in micelles. Org. Biomol. Chem. 2015. V.13. P. 2827–2848. https://doi.org/10.1039/C40B2067G
Zakharova L. Y., Serdyuk A. A., Mirgorodskaya A. B., Kapitanov I. V., Gainanova G. A., Karpichev Y. A., Gavrilova E. L., Sinyashin O. G. Amino Acid-Functionalized Calix[4] Resorcinarene Solubilization by Mono- and Dicationic Surfactants. Journal of Surfactants and Detergents. 2016. V. 19. № 3. P. 493–499. https://doi.org/10.1007/s11743-016-1792-0
Zana R., Xia J. Gemini Surfactant: Synthesis, Interfactial and Solution-Phase Behavior, and Applications. Eds., New York: Marcel Dekker, 2003. 385 P.
Zubareva T. M., Anikeev A. V., Karpichev E .A., Red’ko A. N., Prokop’eva T. M., Popov A. F. Cleavable dicationic surfactant micellar system for the decomposition of organophosphorus compounds. Theoretical and Experimental Chemistry. 2012. V. 47. P. 377–383. https://doi.org/10.1007/ s11237-012-9230-5