SYNTHESIS AND THERMAL CHARACTERISTICS OF WATER-SOLUBLE BLOCKED O-TOLYLISOCYANATE

Authors

DOI:

https://doi.org/10.35433/naturaljournal.1.2023.143-154

Keywords:

isocyanates, latent form, water -soluble reagents, functional materials.

Abstract

Synthesis of latent reagents, in particular isocyanates, in a water-soluble form is a promising direction of chemical research. The replacement of isocyanates with their blocked analogues allows solving several problems: increasing safety in the use and storage of such toxic compounds as isocyanates, facilitating multi-stage synthesis in active media, increasing the selectivity of the main reaction, reducing the toxicity of reagents. In addition, due to the possibility of carrying out the blocking reaction of isocyanates in an aqueous media, the environmental safety of the process of their production is increased and the yield of the product is improved. In order to synthesize a water-soluble latent monoisocyanate for the modification of polymer systems, including watersoluble biopolymers, water-soluble sodium 6-(o-tolylcarbamoylamino)hexanoate was synthesized by the interaction of ortho-tolyl isocyanate with an aqueous solution of sodium salt of 6-aminohexanoic acid. The optimal temperature conditions for the synthesis of water-soluble blocked ortho-tolyl isocyanate were determined. The structure of the reaction product was proved using methods of IRspectroscopy with Fourier transform and NMR 1H spectroscopy. According to the data of thermogravimetric analysis in dynamic mode and pyrolytic mass spectrometry the temperature range of the thermal dissociation of water-soluble ortho-tolyl isocyanate blocked by the sodium salt of 6-aminohexanoic acid ranges from 100 to 140°C and is wider than the temperature range of the thermal dissociation of the hydrophobic compound - ortho- tolyl isocyanate blocked by ε- caprolactam.

References

Губина А.В., Дмитриева Т.В., Бортницкий В.И. Особенности термической диссоциации толуилендиизоцианата, блокированного ε-капролактамом. Полимерний журнал. Т. 36. №3. 2014. С. 257-261. http://nbuv.gov.ua/UJRN/Polimer_2014_36_3_7

Диденко К.С., Козак Н.В., Клепко В.В. Пути блокирования о-толилизоцианата капролактамом. Вопросы химии и химической технологии. 2014. №4. С. 53-56.

Діденко К.С., Козак Н.В., Бортницький В.І., Комлякова О.М., Клепко В.В. Вплив будови і функціональності ізоціанатів блокованих ε-капролактамом, на їх термічні властивості. Український хімічний журнал. 2016. Т. 82. № 8. С. 110-116.

Козак Н.В., Шекера О.В., Нестеренко Г.М., Низельский Ю.М. Теплофізичні властивості термостійких полімерів функціонального призначення на основі. Композиционные полимерные материалы. 2001. Т. 23, №2. С. 96–102.

Козак Н.В., Низельский Ю.Н., Нестеренко Г.M. Модифікування полімерних композицій блокованими поліізоціанатами. ВХХТ. 2002. №3. С. 196-198.

Козак Н.В., Діденко К.С., Давиденко В.В., Клепко В.В. Неізотермічна кінетика термоокиснювальної деструкції поліізоціанату, блокованого е-капролактамом. Полімерний журнал. 2014. Т 36. №1. С. 33-38. http://nbuv.gov.ua/UJRN/Polimer_2014_36_1_6

Хмельницкий Р.А., Лукашенко И.М., Бродский Е.С. Пиролитическая масс- спектрометрия высокомолекулярных соединений. М. Химия. 1980. 280 с.

Delebecq E., Pascault J., Boutevin B., Ganachaud F. On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane. Chem. Rev. 2013. Vol. 113. P. 80–118.

Didenko K., Kozak N., Klepko V. Рreparation and characterization of phenol sorbents based on konjac glucomannan and water-soluble blocked isocyanates. Chem. Technol. 2017. Chemistry Vol. 11. №3. Р. 270–276. https://doi.org/10.23939/chcht11.03.270

Gedan-Smolka M., Haubler L., Fischer D. Thermal deblocking of masked low molecular isocyanates I. Aliphatic isocyanates. Thermochimica Acta. 2000. Vol. 351. P. 95-105. https://doi.org/10.1016/S0040-6031(00)00408-1

Kozak N.V., Nizelskii Yu.M. Alternative reactivity of isocyanates. Ways of activation in polymerization processes. Ukr. Polym. Journ. 1994. Vol. 3. № 1-4. P. 20-38.

Kozak, N.V., Didenko, K.S., Davidenko, V.V., Klepko, V.V. Non-isothermal kinetics of ε-caprolactam blocked polyisocyanate thermal dissociation. Polym. J. 2016. Т. 38. №4. P. 297-301. https://doi.org/10.15407/polymerj.38.04.297

Kozak, N., Nesin, S., Tretinichenko, V. Advanced green materials based on water soluble polysaccharide modified with latent isocyanates. Book of 5th Virtual Congress on Materials Science & Engineering. September 26-29. 2022. Outlining the Importance of Materials Science for a Better Future. P. 78.

Lee J.M., Subramani S., Lee Y.S., Kim J.H. Thermal Decomposition Behavior of Blocked Diisocyanates Derived from Mixture of Blocking Agents. Macromolecular Research. 2005. Vol. 13. №5. P. 427-434. https://doi.org/10.1007/BF03218476

NIST Mass Spectrometry Data Center, NIST MS number 127545.

Saunders J.H., Frisch K.C. Polyurethanes. Chemistry and Technology. V.1. Chemistry. Wiley. New York. 1962. 368 pp. https://doi.org/10.1126/science.140.3571.1083-a

Shen T., Zhou D., Liang L. et al. Synthesis and Characterization of Reactive Blocked-Isocyanate Coupling Agents from Methyl Ethyl Ketoxime, Ethyl Cellosolve/e- Caprolactam Blocked Aromatic and Aliphatic Diisocyanates. Journal of Applied Polymer Science. 2011. Vol. 122. P. 748–757. https://doi.org/10.1002/app.33862

Ulrich Henri. Chemistry and Technology of Isocyanates. Wiley. 1997. 504 p.

Wendlandt W. Wm. Thermal analysis Wiley. 1986. 814 p.

Wicks D.A., Wicks Z.W. Blocked isocyanates III: Part A. Mechanisms and chemistry. Progress in Organic Coatings. 1999. Vol. 36. №3. P. 148-172. Wicks D.A., Wicks Z.W.Jr. Multistep chemistry in thin films; the challenges of blocked isocyanates. Progress in Organic Coatings. 2001. Vol. 43. №1. P. 131–140.

Published

2023-04-04