СОРБЦІЙНО-РЕНТГЕНОФЛУОРЕСЦЕНТНЕ ВИЗНАЧЕННЯ МІКРОКІЛЬКОСТЕЙ ДЕЯКИХ ТОКСИЧНИХ МЕТАЛІВ У ПРИРОДНИХ ОБ’ЄКТАХ ПІСЛЯ ЇХ ПОПЕРЕДНЬОГО КОНЦЕНТРУВАННЯ НА МОДИФІКОВАНОМУ СИЛІКАГЕЛІ

Автор(и)

DOI:

https://doi.org/10.35433/naturaljournal.1.2023.155-166

Ключові слова:

сорбційне концентрування, модифіковані сорбенти, іони токсичних металів, динамічний режим сорбції.

Анотація

Розроблена методика рентгенофлуоресцентного визначення слідових кількостей іонів Pb(ІІ), Cd(II) та Hg(ІІ) (до 250 мкг/мл) безпосередньо у фазі сорбента після вилучення їх із розчинів у динамічному режимі сорбції. В якості сорбента використовували силікагель фірми Merck (d частинок 0,1–0,2 мм, питома поверхня 428,61 м2/г), одностадійно хімічно модифікований функціональними групами 4-(2-піридилазо)-резорцину. У дослідженнях був використаний енергодисперсійний рентгенфлуоресцентний аналізатор з напівпровідниковим детектором “ElvaX” (“Елватекс”, Київ). Встановлено, що при сумісному аналізі мікрокількостей Pb, Cd та Hg сорбційно- рентгенофлуоресцентним методом після їх попереднього концентрування на силікагелі з хімічно закріпленим ПАР необхідне використання калібрувальних кривих для кожного металу з урахуванням присутності інших іонів у розчинах. Розроблений нами метод сорбційно-рентгенофлуоресцентного визначення мікрокількостей Pb(ІІ), Cd(II) та Hg(ІІ) після їх вилучення та попереднього концентрування на силікагелі з хімічно закріпленим 4-(2-піридилазо)-резорцином можна ефективно застосовувати для аналізу природних та техногенних об’єктів складного хімічного складу.

Посилання

Azevedo H. L., Monken H.R., Melo V.P. Study of Heavy Metal Pollution in the Tributary Rivers of the Jacarepagua Lagoon, Rio de Janeiro State, Brazil, Through Sediment Analysis. Springer-Verlag. Berlin. Heidelberg. 1988. P. 21–29. https://doi.org/10.1007/978-3-642-71483-2_4 Balasubramanian G., Senthil A. М. On the empirical study of elemental analysis and metal testing using XRF spectrum analysis algorithm. Int J and Appl Sci Eng. 2016. V. 3 (1). P. 61-67.

Chen Z. W., Walter M. G., Huapeng H. High Definition X-Ray Fluorescence: Principles and Techniques. X-Ray Optics and Instrumentation. 2008. ID 318171. 1–10. https://doi.org/10.1155/2008/318171

Emamjomeh M.M., Sivakumar M. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manage. 2009. V. 90(5). P. 1663–1679. https://doi.org/10.1016/j.jenvman.2008.12.011

Esalah O.J., Weber M.E., Vera J.H. Removal of lead, cadmium and zinc from aqueous solutions by precipitation with sodium di-(n-octyl) phosphinate. Can J Chem Eng. 2000. V. 78 (5). P. 948–954. https://doi.org/10.1002/cjce.5450780512

Khan N.A., Sirajuddin A., Vambol S., Vambol V., Farooqi I.H. Field hospital wastewater treatment scenario. Ecological Questions. 2019. V. 30 (3), P. 57–69. http://dx.doi.org/10.12775/EQ.2019.022

Lertlapwasin R., Bhawawet N., Imyim A., Fuangswasdi S. Ionic liquid extraction of heavy metal ions by 2-aminothiophenol in 1-butyl-3-methylimidazolium hexafluorophosphate and their association constants. Sep Purif Technol. 2010. V. 72 (1). P. 70–76. https://doi.org/10.1016/j.seppur.2010.01.004

Mahmoud A., Hoadley A.F. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Res. 2012. V. 46(10). P. 3364–3376. https://doi.org/10.1016/j.watres.2012.03.039

Mishra A. C., Gupta S. Analysis of heavy metals in industrial soils using atomic absorption spectroscopy and their relationship with some soil properties. Technical Engineering. 2021. № 2 (88). P. 77–85. https://doi.org/10.26642/ten-2021-2(88)-77-85

Sim S. F., Ling T. Y., Gerunsin N., Kho L. P. Assessment of heavy metals in water, sediment, and fishes of a large tropical hydroelectric dam in Sarawak, Malaysia. J Chem. 2009. V. 5(2). P. 2–10. https://doi.org/10.1155/2016/8923183

Stankovic S., Kalaba P., Stankovic A.R. Biota as toxic metal indicators. Environ Chem Lett. 2014. 12, P. 63–84. https://doi.org/10.1007/s10311-013-0430-6

Uo M., Wada T., Sugiyama T. Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens. Jpn Dent Sci Rev. 2014. V. 51 (1). P.2-9. http://dx.doi.org/10.1016/j.jdsr.2014.07.001

Vambol V. V., Shmandij V. M., Vambol S.O., Kondratenko O.M. The systematic approach to solving the problem of management of eclolgical safety during process of biowaste products utilization. Ecological safety. 2015. V.1(19). P. 7–11. http://repositsc.nuczu.edu.ua/handle/123456789/2260

White P.J., Broadley M.R. Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009. V. 182(1). P. 49–84. https://doi.org/10.1111/j.1469- 8137.2008.02738.x

Yanovska E. S., Tertykh V. A., Kichkiruk O. Yu., Dadashev A. D. Adsorption and complexing properties of silicas with analytical reagents grafted via the Mannich reaction. Adsorp Sci Technol. 2007. V. 25 (1–2). P. 81–87. https://doi.org/10.1260/026361707781485726

Yao M., Wang D., Zhao M. Element analysis based on energy-dispersive X-Ray fluorescence. Adv Mater Sci Eng. 2015. ID 290593, P. 1-7. http://dx.doi.org/10.1155/2015/290593

Yurchenko O.I., Chernozhuk T.V., Baklanov A.N., Kravchenko O.A. Analysis of water and bottom sediments of the Tiger river (Iraq) using ultrasonic treatment, nonionic surface active substances and β-diketonates of metals as standard samples. J Chem Technol Biotechnol. 2021. V. 29(2). P. 173-178. https://doi.org/10.15421/jchemtech.v29i2.214575

Zhang Y., Zhang X. L., Jia W. B., Shan Q., Ling Y. Sh., Hei D. Q., Chen Da. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt. Appl Spectrosc. 2016. V. 70 (2) P. 272-278. https://opg.optica.org/as/abstract.cfm?URI=as-70-2-272

Ziarati P., Mostafidi M., Arabian S., Vambol S., Vambol V., Kozub S., Kozub Р. Experimental and theoretical background for the wastewater treatment technology development by tea waste. VII-th All-Ukrainian Congress of ecologist with International Participation. 2019. P. 68. Бондаренко О. В. Pентген-флуоресцентний спектральний аналіз сучасних виробів для пірсингу. Вісник проблем біології і медицини. 2017. Вип. 2 (136). С.229- 232. http://repository.pdmu.edu.ua/handle/123456789/11668

Кичкирук О.Ю. Застосування реакції амінометилювання для хемосорбції комплексотвірних аналітичних реагентів на поверхні кремнеземів: автореф. дис. канд. хім. наук: 01.04.18. Київ, 2008. 21 с. http://eprints.zu.edu.ua/17792/1/dys_Kychkyruk.pdf

Козуб П.А., Вамболь С.О., Козуб С.М. Дослідження особливостей застосування рентгенофлуоресцентного аналізу для визначення важких металів у ґрунті. Проблеми охорони праці в Україні. 2020. № 36 (2), С. 15-20. https://doi.org/10.36804/nndipbop.36-2.2020.15-20 . Мєшков А., Кузнєцов В., Гребеник Л., Суходуб Л. Застосування РФА для кількісного визначення елементного складу сироватки крові. Вісник Львівського університету. 2014. Вип. 68. С. 96–101. http://nbuv.gov.ua/UJRN/VLNU_biol_2014_68_9

##submission.downloads##

Опубліковано

2023-04-04